مقدمه ای بر بهینه سازی و الگوریتم های موجود

هدف از بهينهسازي يافتن بهترين جواب قابل قبول، با توجه به محدوديتها و نيازهاي مسأله است. براي يك مسأله، ممكن است جوابهاي مختلفي موجود باشد كه براي مقايسه آنها و انتخاب جواب بهينه، تابعي به نام تابع هدف تعريف ميشود. انتخاب اين تابع به طبيعت مسأله وابسته است. به عنوان مثال، زمان سفر يا هزينه از جمله اهداف رايج بهينهسازي شبكههاي حمل و نقل ميباشد. به هر حال، انتخاب تابع هدف مناسب يكي از مهمترين گامهاي بهينهسازي است. گاهي در بهينهسازي چند هدف  به طور همزمان مد نظر قرار ميگيرد؛ اين گونه مسائل بهينهسازي را كه دربرگيرنده چند تابع هدف هستند، مسائل چند هدفي مينامند. سادهترين راه در برخورد با اين گونه مسائل، تشكيل يك تابع هدف جديد به صورت تركيب خطي توابع هدف اصلي است كه در اين تركيب ميزان اثرگذاري هر تابع با وزن اختصاص يافته به آن مشخص مي‌شود. هر مسأله بهينهسازي داراي تعدادي متغير مستقل است كه آنها را متغيرهاي طراحي می‌نامند كه با بردار n  بعدي x  نشان داده ميشوند.

هدف از بهينهسازي تعيين متغيرهاي طراحي است، به گونهاي كه تابع هدف كمينه يا بيشينه شود.

مسائل مختلف بهينهسازي  به دو دسته زير تقسيم ميشود:

الف) مسائل بهينهسازي بيمحدوديت: در اين مسائل هدف، بيشينه يا كمينه كردن تابع هدف بدون هر گونه محدوديتي بر روي متغيرهاي طراحي مي‌باشد.

ب) مسائل بهينهسازي با محدوديت: بهينهسازي در اغلب مسائل كاربردي، با توجه به محدوديتهايي صورت ميگيرد؛ محدوديتهايي كه در زمينه رفتار و عملكرد يك سيستم ميباشد و محدوديتهاي رفتاري و محدوديتهايي كه در فيزيك و هندسه مسأله وجود دارد، محدوديتهاي هندسي يا جانبي ناميده ميشوند.

معادلات معرف محدوديتها ممكن است  به صورت مساوي يا نامساوي باشند كه در هر مورد، روش بهينهسازي متفاوت ميباشد. به هر حال محدوديتها، ناحيه قابل قبول در طراحي را معين ميكنند.

 فرايند بهينه ­سازي

فرموله كردن مسئله: در اين مرحله، يك مسئله ­ي تصميم ­گيري، همراه با يك ساختار كلي از آن تعريف مي‌شود. اين ساختار كلي ممكن است خيلي دقيق نباشد اما وضعيت كلي مسئله را، كه شامل فاكتورهاي ورودي و خروجي و اهداف مسئله است، بيان مي­ كند. شفاف­ سازي و ساختاردهي به مسئله، ممكن است براي بسياري از مسايل بهينه­ سازي، كاري پيچيده باشد.

مدل­ سازي مسئله:
 در اين مرحله يك مدل رياضي كلي براي مسئله، ساخته مي­ شود. مدل­سازي ممكن است از مدل­ هاي مشابه در پيشينه ­ي موضوع كمك بگيرد. اين گام موجب تجزيه مسئله به يك يا چند مدل بهينه‌سازي مي­ گردد.

بهينه­ سازي مسئله:
     پس از مدل سازي مسئله، روال حل، يك راه ­حل خوب براي مسئله توليد مي­ كند. اين راه‌حل ممكن است بهينه يا تقريباً بهينه باشد. نكته ­اي كه بايد به آن توجه داشت اين است كه راه ­حل به دست آمده، راه­ حلي براي مدل طراحي شده است، نه براي مسئله ­ي واقعي. در هنگام فرموله كردن و مدلسازي ممكن است تغييراتي در مسئله واقعي به وجود آمده و مسئله­ ي جديد، نسبت به مسئله­ ي واقعي تفاوت زيادي داشته باشد.

استقرار مسئله:
    راه ­حل به دست آمده توسط تصميم گيرنده بررسي مي­ شود و در صورتي كه قابل قبول باشد، مورد استفاده قرار مي­ گيرد و در صورتي كه راه­حل قابل قبول نباشد، مدل يا الگوريتم بهينه­ سازي بايد توسعه داده شده و فرايند بهينه­ سازي تكرار گردد. 
 

الگوریتم­ های بهینه­ سازی

هدف الگوریتم­ های اکتشافی، ارائه راه حل در چارچوب یک زمان قابل قبول است که برای حل مسئله مناسب باشد، ممکن است الگوریتم اکتشافی، بهترین راه حل واقعی برای حل مسئله نبوده ولی می­ تواند راه حل نزدیک به بهترین باشد. الگوریتم ­های اکتشافی با الگوریتم­ های بهینه­ سازی برای اصلاح کارایی الگوریتم می‌توانند ترکیب شوند. الگوریتم فرا اکتشافی ترکیبی است از الگوریتم ­های اکتشافی که برای پیدا کردن، تولید یا انتخاب هر اکتشاف در هر مرحله طراحی می­شود و راه حل خوبی برای مسائلی که مشکل بهینه‌سازی دارند ارائه می‌دهد. الگوریتم­ های فرا اکتشافی برخی از فرضیات مسائل بهینه­ سازی که باید حل شود را در نظر می ­گیرد.


 روش‌هاي فرا ابتكاري برگرفته از طبيعت

الگوريتم ­هاي فراابتكاري الگوريتم ­هايي هستند كه با الهام از طبيعت، فيزيك و انسان طراحي شده ­اند و در حل بسياري از مسايل بهينه­ سازي استفاده می­ شوند. معمولاً از الگوريتم­ هاي فراابتكاري در تركيب با ساير الگوريتم­ ها، جهت رسيدن به جواب بهينه يا خروج از وضعيت جواب بهينه محلي استفاده مي­گردد. در سالهاي اخير يكي از مهمترين و اميدبخشترين تحقيقات، «روشهاي ابتكاري برگرفته از طبيعت» بوده است؛ اين روشها شباهتهايي با سيستمهاي اجتماعي و يا طبيعي دارند. كاربرد ‌آنها برگرفته از روشهاي ابتكاري پيوسته می‌باشد كه در حل مسائل مشكل تركيبي (NP-Hard) نتايج بسيار خوبی داشته است.

در ابتدا با تعريفي از طبيعت و طبيعي بودن روشها شروع ميكنيم؛ روشها برگرفته از فيزيك، زيستشناسي و جامعهشناسي هستند و به صورت زير تشكيل شدهاند:

-         استفاده از تعداد مشخصي از سعيها و كوششهاي تكراري

-          استفاده از يك يا چند عامل (نرون، خردهريز، كروموزوم، مورچه و غيره)

-          عمليات (در حالت چند عاملي) با يك سازوکار همكاري ـ رقابت

-          ايجاد روشهاي خود تغييري و خود تبديلي

طبيعت داراي دو تدبير بزرگ مي‌باشد:

1-    انتخاب پاداش براي خصوصيات فردي قوي و جزا براي فرد ضعيفتر؛

2-     جهش كه معرفي اعضای تصادفي و امکان تولد فرد جديد را ميسر می‌سازد.

به طور كلي دو وضعيت وجود دارد كه در روشهاي ابتكاري برگرفته از طبيعت ديده ميشود، يكي انتخاب و ديگري جهش. انتخاب ايدهاي مبنا براي بهينهسازي و جهش ايدهاي مبنا براي جستجوي پيوسته ميباشد.

از خصوصيات روشهاي ابتكاري  برگرفته از طبيعت، ميتوان به موارد زير اشاره كرد:

1-    پديدهاي حقيقي در طبيعت را مدلسازي ميكنند.

2-     بدون قطع ميباشند.

3-     اغلب بدون شرط تركيبي همانند (عاملهاي متعدد) را معرفي مينمايند.

4-     تطبيقپذير هستند.

خصوصيات بالا باعث رفتاري معقول در جهت تأمين هوشمندي مي‌شود. تعريف هوشمندي نيز عبارت است از قدرت حل مسائل مشكل؛ بنابراين هوشمندي به حل مناسب مسائل بهينهسازي تركيبي منجر می‌شود.

 

برخی الگوریتم های بهینه سازی مهم عبارت انداز:

 الگوریتم بهینه سازی ازدحام ذرات

در سال 1995 ابرهارت و کنیدی براي اولین بار PSOبه عنوان یک روش جستجوي غیر قطعی براي بهینه سازي تابعی مطرح گشت این الگوریتم از حرکت دسته جمعی پرندگانی که به دنبال غذا می­باشند، الهام گرفته شده است. گروهي از پرندگان در فضايي به صورت تصادفي دنبال غذا مي­گردند. تنها يك تكه غذا در فضاي مورد بحث وجود دارد. هيچ يك از پرندگان محل غذا را نمي­دانند. يكي از بهترين استراتژي­ها مي­تواند دنبال كردن پرنده­اي باشد كه كمترين فاصله را تا غذا داشته باشد.  اين استراتژي در واقع جانمايه الگوريتم است. هر راه­حل كه به آن يك ذره گفته مي­شود،PSO  در الگوريتم معادل يك پرنده در الگوريتم حركت جمعي پرندگان مي­باشد. هر ذره يك مقدار شايستگي دارد كه توسط يك تابع شايستگي محاسبه مي­شود. هر چه ذره در فضا­ي جستجو به هدف - غذا در مدل حركت پرندگان-  نزدیكتر باشد، شايستگي بيشتري دارد. همچنين هر ذره داراي يك سرعت است كه هدايت حركت ذره را بر عهده دارد. هرذره با دنبال كردن ذرات بهينه در حالت فعلي، به حركت خود در فضاي مساله ادامه مي­دهد.

الگوریتم کرم شب­ تاب

الگوریتم کرم شب ­تاب به عنوان الگوریتم ذهنی مبتنی بر ازدحام، برای وظایف بهینه­سازی محدود، ارائه شده است. در این الگوریتم از رفتار تابشی کرم­های شب تاب الهام گرفته شده است. کرم­های شب تاب در طبیعت به طور دسته جمعی زندگی می­کنند و همواره کرم کم نورتر به سمت کرم پرنور تر حرکت می‌کند. این الگوریتم یک رویه تکراری مبتنی بر جمعیت را با عوامل بی­شمار (تحت عنوان کرم­های شب­تاب) به کار می‌گیرد. به این عوامل امکان داده می­شود تا فضای تابع هزینه را به صورت موثرتری نسبت به جستجوی تصادفی توزیع شده، بررسی کنند. تکنیک بهینه­سازی هوشمند، مبتنی بر این فرضیه است که راه­حل یک مشکل بهینه­سازی را، می­توان به عنوان عاملی (کرم شب­تاب) در نظر گرفت که به صورت متناسب با کیفیت آن در یک محیط تابیده می­شود. متعاقباً هر کرم شب­تاب، همتایان خود را (صرف نظر از جنسیتشان) جذب می­کند که فضای جستجو را به صورت موثرتری بررسی می­کند. الگوریتم­های کرم شب­تاب نورهای ریتمیک و کوتاه تولید می­کنند. الگوی نوری هر کدام از کرم­های شب­تاب با یکدیگر متفاوت می­باشند. الگوریتم­های کرم شب­تاب از این نورها به دو منظور استفاده می­کنند. 1- پروسه جذب جفت­ها 2- جذب شکار. به علاوه این نورها می­توانند به عنوان یک مکانیزم محافظتی برای کرم­های شب­تاب باشند.

   الگوریتم کلونی مورچگان

بهینه‌سازی گروه مورچه‌ها یا ACO همانطور که می دانیم مسئله یافتن کوتاهترین مسیر، یک مسئله بهینه سازیست که گاه حل آن بسیار دشوار است و گاه نیز بسیار زمانبر. برای مثال مسئله فروشنده دوره گرد را نیز می‌توان مطرح کرد. در این روش(ACo)، مورچه‌های مصنوعی به‌وسیلهٔ حرکت بر روی نمودار مسئله و با باقی گذاشتن نشانه‌هایی بر روی نمودار، همچون مورچه‌های واقعی که در مسیر حرکت خود نشانه‌های باقی می‌گذارند، باعث می‌شوند که مورچه‌های مصنوعی بعدی بتوانند راه‌حل‌های بهتری را برای مسئله فراهم نمایند. همچنین در این روش می‌توان توسط مسائل محاسباتی-عددی بر مبنای علم احتمالات بهترین مسیر را در یک نمودار یافت.

 الگوریتم ژنتیک

الگوریتم‌های ژنتیک، تکنیک جستجویی در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکامل است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت و جهش استفاده می‌کند. این الگوریتم برای اولین بار توسط جان هنری هالند معرفی شد. در واقع الگوریتم‌های ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگو استفاده می‌کنند. الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای رگرسیون هستند. در هوش مصنوعی الگوریتم ژنتیک (یا GA) یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند. مسئله‌ای که باید حل شود دارای ورودی‌هایی می‌باشد که طی یک فرایند الگوبرداری شده از تکامل ژنتیکی به راه‌حلها تبدیل می‌شود سپس راه حلها بعنوان کاندیداها توسط تابع ارزیاب (Fitness Function) مورد ارزیابی قرار می‌گیرند و چنانچه شرط خروج مسئله فراهم شده باشد الگوریتم خاتمه می‌یابد. الگوریتم ژنتیک بطور کلی یک الگوریتم مبتنی بر تکرار است که اغلب بخش‌های آن به صورت فرایندهای تصادفی انتخاب می‌شوند.


Copyright © 2015 ArtaSeminar.com- Designed By ElbayTeam